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1, Identification of Allosteric Residues with Reversed Allosteric Effect (RAE). 

Reversed allosteric effect (RAE) reflects response of a single residue against orthosteric perturbation. 

Those with strong RAE are identified as allosteric residues. RAE is mathematically defined as the change 

of residue-residue interactions inside a pocket between apo state and orthosteric ligand bound (holo) state, 

and was previously calculated using MM/GBSA decomposition along conformation ensemble generated by 

all-atom MD simulation (1,2). The main effort here, is to simplify the calculation. 

Firstly, the input protein structure (binding orthosteric ligand) is reduced to coarse-grained (CG) models 

for the two states. In apo state, CG sites are placed at Cαs of the protein. In holo state, atoms of orthosteric 

ligand are also turned into CG sites. For both systems, the potential energy function (3) is: 
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n is the number of CG sites. dij is distance between site i and j. d
0 

ij  is the initial distance between site i 

and j. 𝐻(𝑥) is a Heaviside function. It equals 0 when x ≤ 0 and 1 when x > 0. kij is elastic constant between 

site i and j and is set as 1 kcal/(mol·Å). The cutoff distance rc is set as 12 Å. 

Then we can calculate the interaction between residue i to all other residues in candidate pocket P 

(detected by FPocket (4)) according to eqn. (1): 
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An additional one-second is multiplied here to avoid repeated calculation. Heaviside function is omitted 

here since every two residues in the pocket could have interactions. <dij>s is the average distance between 

site i and j. s defines the state and is either apo or holo. <dij>s is calculated by NMA. In brief, eigenvectors 

with corresponding eigenvalues are solved from the Hessian matrix of eqn. (1). These data describe the 

oscillations (also known as normal modes) from initial position with their frequencies for each CG site (or 

residue). Suppose for residue i, its displacement due to any of the normal modes obeys a normal distribution, 

we could describe the position ensemble of this residue at state s by:  
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, where 𝑅𝑖
0 describes the initial position of residue i, q is the number of modes used and is set to 100 here. 

λp and up are the eigenvalues and eigenvectors of mode p. sf is a scaling factor, ensuring the root mean 

square distance of the whole protein is 1 Å. Xp is a random variable obeying normal distribution.  Therefore, 

<dij>s is written as:  

〈𝑑𝑖𝑗〉𝑠 = 〈|𝑅𝑖
𝑠 − 𝑅𝑗

𝑠|〉   (4) 

Unluckily, this expectation could not be analytically solved. Therefore, we solved this approach with a 

Monto-Carlo approach with 2000 samples. We found, though final results are not identical in 50 runs, the 

deviations are negligible, and it will not change the final prediction of allosteric sites.  

    Finally, RAE of residue i could be written as: 

𝑅𝐴𝐸𝑖 = 𝐼𝑖
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𝑎𝑝𝑜
  (5) 

    Normal mode analysis and pose sampling is done by Prody (5) package.  

2, Recognition of Allosteric Sites. 

2.1, Model Consrtruction. 
AlloReverse identifies allosteric sites by discriminating whether a pocket-like region is allosteric or not 

using AdaBoost, a machine learning (ML) technique. AdaBoost is an ensemble learning framework using 

a serial of base models (6). The ith model is trained to patch the mistakes by the (i-1)th model.  The model 

applies hydrophobicity, flexibility and RAE of pocket as input, and outputs judgement with prediction 

confidence. All three features are standardized according to protein. One-layer decision tree is applied as 

the base model. The model was trained on a dataset of 134 proteins and tested on a dataset of 58 proteins. 

In training set, 2431 pocket like regions are detected, and 208 of which with at least 10% overlap of recorded 
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allosteric ligand are labeled as “allosteric site”, while the rest are labeled as “other site”. Due to great 

imbalance (about 1:10) between the two sites, oversampling method SMOTE was applied in training. Best 

super-parameters, including number of classifiers and learning rate, were grid-searched based on 5-fold 

cross validation on training set, where the average Matthews correlation coefficient (MCC) was used for 

index. The model is constructed by imblearn and scikit-learn toolkit (7). 

2.2, Calculation of Input Features. 
Hydrophobicity of pocket. This term is calculated with Fpocket. We would introduce how Fpocket detect 

pockets first. Fpocket first assigns alpha spheres in protein, which is a sphere decided by any 4 atoms in 

protein but with a restriction of radius range. Each alpha sphere decides a minor hole on protein. These 

holes are then clustered into several pockets on protein surface. In Fpocket, if more than 2 atoms, for 

decision of an alpha sphere, are polar atoms, then this alpha sphere is a polar alpha sphere. In Pocket P, 

we could calculate, for each polar alpha sphere, the number of other alpha spheres having overlap with 

current alpha sphere (nneigh). Then hydrophobicity of pocket P, or “Mean local hydrophobic density” in 

Fpocket, is calculated as the average of nneigh in pocket P. 

Flexibility of pocket. This term is also calculated with Fpocket. Fpocket would define the atoms to form 

the pocket. The average B-factor among these atoms is then calculated. The value is finally normalized 

among all detected pockets on the protein surface. 

RAE of pocket. RAE of the pocket is defined as the sum of RAE of residues in the pocket. 

2.3, Empirical Adjustment After Prediction. 
Prediction confidence is an output in AlloReverse by function “predict_proba” in scikit-learn toolkit. 

However, this value is not calibrated. We calibrate this value with the following relationship. 

𝑐𝑜𝑛𝑓Θ = min(2.5 ∗ 𝑐𝑜𝑛𝑓 − 0.75, 1)    (6)   

Due to oversampling applied, the model tends to give more positive predictions than reality. Therefore, 

we did the following adjustments. Pockets having more than 10% overlap with the orthosteric ligand is not 

a predicted allosteric site. In cases where above 70% pockets on protein are predicted to be allosteric sites, 

only sites in top 3 predicting confidence are selected as final prediction. 

3, Prediction of Hierarchical Regulation Pathways. 

Suppose the holo CG model is a graph and CG sites serve as nodes, regulation pathway toward pocket 

P is defined as the shortest route from the most central node of orthosteric ligand to the residue in pocket 

P with the highest RAE. The distance between every 2 nodes is defined as followed:  
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Here, d
0 
ij  is the initial distance between site i and j; 𝑐𝑜𝑟𝑟𝑖𝑗 is the mean of Pearson correlation coefficient 

between node i and j at any direction or Top 100 modes. The shortest route is solved by Dijkstra algorithm 

(10).  

4, Evaluation of Site-Site Couplings. 

If pathway towards pocket P and Q each makes a set of residues named WP and WQ, then the site-site 

coupling score of pocket P by pocket Q is defined as: 

𝑐𝑄→𝑃 =
‖𝑊𝑃 ∩ 𝑊𝑄‖

‖𝑊𝑃‖
     (11) 

namely, the ratio of residues of pathway towards P shared by pathway towards Q. It could be seen that 

site-site coupling is asymmetry.  
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